Identification and Characterization of PPI-461, a Potent and Selective HCV NS5A Inhibitor with Activity Against all HCV Genotypes

Richard Colonno, Ningwu Huang, Margaret Bencsik, Eric Peng, Anja Huq, Qi Huang, Min Zhong and Leping Li

Presidio Pharmaceuticals, San Francisco, CA, USA

Disclosure: All authors are employees of Presidio Pharmaceuticals
HCV NS5A Protein

- Functions as a dimer (via Domain 1)
- Interacts with membranes and is required for formation of viral replication complex, particle assembly and pathogenesis
- Zn$^{++}$ binding protein that binds ssRNA at dimer interface
- Phosphorylated, with degree of phosphorylation regulating replication levels
- Numerous reported interactions with cellular proteins involved in signaling, lipid transport, transcription, etc.
- Plays a key role in IFN response and tumor induction
- No known cellular homologs
- Binding site of inhibitors likely resides within the N-terminal 100 aa
Advantages of NS5A Inhibitors

• Exhibit excellent potency
 – HCV 1a and 1b EC$_{50}$s in pM range in replicon assays
 – 3-log viral load drop within 16 hr following single 10 mg dose of BMS-7900521 in human clinical trials

• Target a protein with a range of critical functions - potential to simultaneously inhibit multiple stages of viral replication

• Broad-spectrum coverage of all major HCV genotypes

• Potential for low dose, once daily dosing in man

• Low probability of drug-drug interactions

• Appear to have good safety profiles

• Potential to be core component of combination regimens

1Nettles et al. Poster 893, AASLD 2008
Presidio NS5A Inhibitor Program

• Extensive medicinal chemistry effort culminated in the synthesis of >1,600 proprietary compounds

• Several chemical series pursued in parallel with all compounds screened in HCV 1a and 1b replicon assays

• Over 650 compounds achieved virologic selection criteria of <1 nM EC\textsubscript{50} vs. HCV 1a and 1b, and >80 were further characterized for ADME and PK properties

• Multiple compounds from distinct chemical series selected as potential clinical candidates and profiled extensively

• The most advanced is PPI-461, which was nominated as our first clinical candidate in June 09
PPI-461 Virology Profile

- PPI-461 EC₉₀ levels are 0.62 nM (1a) and 0.022 nM (1b)
- 6-fold EC₅₀ increase observed in serum shift studies (40%/2% human serum)
- Inactive in BVDV, HRV-16, Flu-A, HIV-1, RSV and HSV-1 cell protection assays (EC₅₀ >10,000 nM)
- CC₅₀ >10,000 nM in 3-day cytotoxicity assays using 7 human cell types

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Replicon Assay EC₅₀ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HCV 1a</td>
</tr>
<tr>
<td>PPI-461</td>
<td>0.21 ± 0.05</td>
</tr>
<tr>
<td>Telaprevir (PI)</td>
<td>500 ± 196</td>
</tr>
<tr>
<td>ITMN-191 (PI)</td>
<td>5.5 ± 1</td>
</tr>
<tr>
<td>HCV-796 (NNuc)</td>
<td>14.6 ± 6</td>
</tr>
<tr>
<td>PSI-6130 (Nuc)</td>
<td>565 ± 82</td>
</tr>
</tbody>
</table>

N ≥ 3 independent assays
HCV Spectrum of PPI-461

- Panel of HCV 1b replicons constructed that contain the NS5A gene of each of the other major genotypes (exchanged gene segments included all of Domain 1 and ranged from 175-424 aa in length)

<table>
<thead>
<tr>
<th>HCV Genotype</th>
<th>Replicon Assay</th>
<th>EC_{50} (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Stable Cell Line</td>
<td>0.21 ± 0.05</td>
</tr>
<tr>
<td>1a</td>
<td>Transient Transfection</td>
<td>0.17 ± 0.01</td>
</tr>
<tr>
<td>1b</td>
<td>Stable Cell Line</td>
<td>0.01 ± 0.002</td>
</tr>
<tr>
<td>1b</td>
<td>Transient Transfection</td>
<td>0.02 ± 0.003</td>
</tr>
<tr>
<td>2a</td>
<td>Stable Cell Line</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>3a</td>
<td>Stable Cell Line</td>
<td>9.3 ± 1.7</td>
</tr>
<tr>
<td>4a</td>
<td>Transient Transfection</td>
<td>0.1 ± 0.01</td>
</tr>
<tr>
<td>5a</td>
<td>Transient Transfection</td>
<td>0.1 ± 0.01</td>
</tr>
<tr>
<td>6a</td>
<td>Transient Transfection</td>
<td>6.1 ± 0.11</td>
</tr>
<tr>
<td>7a</td>
<td>Transient Transfection</td>
<td>0.6 ± 0.04</td>
</tr>
</tbody>
</table>

N ≥ 3 independent assays
PPI-461 Combination Studies

Stable HCV 1b Replicon Cell Assay

<table>
<thead>
<tr>
<th>Compound 1 (Range)</th>
<th>Compound 2 (Range)</th>
<th>Combination Index (CI)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI-461 (0.0025 – 0.2 nM)</td>
<td>ITMN-191 (PI) (0.062 - 5 nM)</td>
<td>EC\text{50} 1.10 EC\text{75} 0.92 EC\text{90} 0.82</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>HCV-796 (NNuc) (1.23 - 100 nM)</td>
<td>EC\text{50} 0.90 EC\text{75} 0.65 EC\text{90} 0.47</td>
<td>Additive to Synergistic</td>
</tr>
<tr>
<td></td>
<td>2’-C methyl Adenosine (Nuc) (10 - 833 nM)</td>
<td>EC\text{50} 0.95 EC\text{75} 0.94 EC\text{90} 0.93</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>IFN-α (0.08 – 6.7 IU)</td>
<td>EC\text{50} 0.92 EC\text{75} 0.83 EC\text{90} 0.75</td>
<td>Additive to Synergistic</td>
</tr>
</tbody>
</table>

CI values < 0.8 indicate synergy, >1.2 indicate antagonism

- No evidence of antagonism observed
- PPI-461 can likely be combined with all classes of HCV inhibitors
Resistance

• Resistance is the potential Achilles heel of all antivirals and antimicrobials

• Critical to understand resistance patterns using multiple viral genotypes for more comprehensive assessment of anticipated resistance profile in patients

• Comprehensive analysis conducted on PPI-461
 – Multiple cell passage studies using HCV 1a and 1b replicon cell lines
 – Colony formation assays with HCV 1b (3a NS5A) cell line
 – Genotypic and phenotypic analysis, along with determination of replicative capacity of all emerging variants
 – Extensive panel of resistant variants generated in various genetic backbones
 – Cross-resistance studies
Selection of PPI-461 Resistant Variants (Cell Passage Studies)

- **HCV 1b**
 - EC$_{50}$ 0.01 nM
 - **Early Passages**
 - EC$_{50}$ 3 - 4 nM
 - 31V, 93H
 - **Extended Passage**
 - EC$_{50}$ 1,067 nM
 - 31V+93H

- **HCV 1a**
 - EC$_{50}$ 0.13 nM
 - **Early Passages**
 - EC$_{50}$ 22 - 160 nM
 - 28T, 30K, 31V, 93H/N/C, 30K+81S, 24T+30R
 - **Extended Passage**
 - EC$_{50}$ 319 - 4,101 nM
 - 24R+30K, 28T+30R, 24Q+93N

- Multiple pathways to resistance depending on viral genotype
- High level resistance requires multiple substitutions
- Resistance maps to Domain 1, with greatest decreases in susceptibility associated with substitutions at amino acid residues 24-31 and 93
Lack of Cross Resistance

<table>
<thead>
<tr>
<th>HCV 1a Variant</th>
<th>HCV 1a EC$_{50}$ (nM)</th>
<th>HCV 1b EC$_{50}$ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPI-461</td>
<td>ITMN-191</td>
</tr>
<tr>
<td>WT</td>
<td>0.13</td>
<td>5.4</td>
</tr>
<tr>
<td>NS5A L31V+Y93H</td>
<td>3,825</td>
<td>4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>NS3 D168A</th>
<th>NS5B C316Y</th>
<th>NS5B S262T</th>
<th>NS5A 262Q+318W+320E</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI-461 (NS5A)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>ITMN-191 (PI)</td>
<td>0.5</td>
<td>66</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>HCV-796 (NNuc)</td>
<td>6.9</td>
<td>127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSI-6130 (Nuc)</td>
<td>754</td>
<td>3,512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CsA (NS5A)</td>
<td>112</td>
<td></td>
<td></td>
<td>567</td>
</tr>
</tbody>
</table>

*N ≥ 3 independent assays

- No evidence of cross resistance between NS5A and other classes of inhibitors
Combination Resistance Studies
(21-Day Colony Formation Assay)

- Combination treatment prevents emergence of resistant variants
- No evidence of dual resistant colonies following genotypic characterization

EC₅₀ concentrations: PPI-461 (NS5A) 10 nM, PSI-6130 (Nuc) 1,000 nM, HCV-796 (NNuc) 15 nM and IFNα 2 IU/mL
PPI-461 ADME and PK Profile

- Highly stable in liver microsomal extracts from human, monkey, dog and rat
- Protein binding (equilibrium dialysis): 94%
- No significant inhibition against a panel of major CYP450 isozymes (IC50 >10,000 nM)
- PK profile determined in rats, monkeys and dogs
 - Good oral bioavailability (29-86%) across species
 - Elimination half-lives predictive of once daily dosing in humans
 - Observe good volume of distribution across species
 - Dose dependent increase in plasma exposure (Cmax, AUC) up to levels exceeding HCV 1a replicon EC50 by >100,000-fold
 - Enhanced liver exposure vs. plasma, with comparable half-lives in both and no evidence of accumulation with repeated dosing
PPI-461 GLP Toxicology Studies

• No significant inhibition in hERG assay ($IC_{50} > 10 \mu M$)

• Negative in panel of genotoxicity assays
 – Bacterial Reverse Mutation (Ames) Assay
 – Mammalian Chromosome Aberration in Human PBL
 – Rat Bone Marrow Micronucleus Assay

• Well tolerated in pivotal 14-Day studies
 – No drug-associated deaths in any study
 – Rat NOAEL observed at plasma C_{max} levels of 19-32 µM
 (90,000 to 152,000-fold HCV 1a EC$_{50}$)
 – Monkey NOAEL observed at plasma C_{max} levels 7-17 µM
 (33,000 to 81,000-fold HCV 1a EC$_{50}$)

• Well tolerated in panel of pharmacology studies
 – Rat CNS
 – Rat Respiratory
 – Monkey CV
Summary

• HCV NS5A inhibitors belonging to several distinct chemical series identified following an extensive medicinal chemistry effort

• PPI-461 nominated as first clinical candidate
 – Highly potent and selective inhibitor in HCV 1a and 1b replicon assays ($EC_{50} \leq 0.2$ nM)
 – Active against other major genotypes (EC_{50}s 0.1-9 nM)
 – Possesses desirable ADME and PK properties predictive of once daily dosing in humans
 – Well tolerated in a battery of GLP toxicology studies

• Enabling studies completed and regulatory documents filed

• Anticipate initiation of clinical studies in near future
Additional Acknowledgements

- Presidio Team
- Chemistry CROs
 - ACME
 - Aptuit
 - ChemPartner
 - Sygnature
 - Syngene
- Biology CRO
 - ImQuest
- ADME/PK CROs
 - Cerep
 - ChemPartner
 - Ricerca
 - XenoTech
- Toxicology CROs
 - BioReliance
 - ChanTest
 - Ricerca